Hidden Relation between Reflection Amplitudes and Thermodynamic Bethe Ansatz

نویسندگان

  • Changrim Ahn
  • Chanju Kim
  • Chaiho Rim
چکیده

In this paper we compute the scaling functions of the effective central charges for various quantum integrable models in a deep ultraviolet region R → 0 using two independent methods. One is based on the “reflection amplitudes” of the (super-)Liouville field theory where the scaling functions are given by the conjugate momentum to the zero-modes. The conjugate momentum is quantized for the sinh-Gordon, the Bullough-Dodd, and the super sinh-Gordon models where the quantization conditions depend on the size R of the system and the reflection amplitudes. The other method is to solve the standard thermodynamic Bethe ansatz (TBA) equations for the integrable models in a perturbative series of 1/(const. − lnR). The constant factor which is not fixed in the lowest order computations can be identified only when we compare the higher order corrections with the quantization conditions. Numerical TBA analysis shows a perfect match for the scaling functions obtained by the first method. Our results show that these two methods are complementary to each other. While the reflection amplitudes are confirmed by the numerical TBA analysis, the analytic structures of the TBA equations become clear only when the reflection amplitudes are introduced. [email protected] [email protected] [email protected] 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reflection Amplitudes of Boundary Toda Theories and Thermodynamic Bethe Ansatz

We study the ultraviolet asymptotics in An affine Toda theories with integrable boundary actions. The reflection amplitudes of non-affine Toda theories in the presence of conformal boundary actions have been obtained from the quantum mechanical reflections of the wave functional in the Weyl chamber and used for the quantization conditions and ground-state energies. We compare these results with...

متن کامل

Reflection Amplitudes in Non-Simply Laced Toda Theories and Thermodynamic Bethe Ansatz

We study the ultraviolet asymptotics in non-simply laced affine Toda theories considering them as perturbed non-affine Toda theories, which possess the extended conformal symmetry. We calculate the reflection amplitudes, in non-affine Toda theories and use them to derive the quantization condition for the vacuum wave function, describing zero-mode dynamics. The solution of this quantization con...

متن کامل

Reflection Amplitudes of ADE Toda Theories and Thermodynamic Bethe Ansatz

We study the ultraviolet asymptotics in affine Toda theories. These models are considered as perturbed non-affine Toda theories. We calculate the reflection amplitudes, which relate different exponential fields with the same quantum numbers. Using these amplitudes we derive the quantization condition for the vacuum wave function, describing zero-mode dynamics, and calculate the UV asymptotics o...

متن کامل

Hidden Relation between Re ection Amplitudesand Thermodynamic Bethe

In this paper we compute the scaling functions of the eeective central charges for various quantum integrable models in a deep ultraviolet region R ! 0 using two independent methods. One is based on the \reeection amplitudes" of the (super-)Liouville eld theory where the scaling functions are given by the conjugate momentum to the zero-modes. The conjugate momentum is quantized for the sinh-Gor...

متن کامل

Reeection Amplitudes of Ade Toda Theories and Thermodynamic Bethe Ansatz

We study the ultraviolet asymptotics in aane Toda theories. These models are considered as perturbed non-aane Toda theories. We calculate the reeection amplitudes, which relate diierent exponential elds with the same quantum numbers. Using these amplitudes we derive the quantization condition for the vacuum wave function, describing zero-mode dynamics, and calculate the UV asymptotics of the ee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999